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APPLICATION OF THE METHOD OF INTEGRATING MATRICES FOR
CALCULATING THE NATURAL OSCILLATIONS OF A PROPELLER BLADE WITH
CONSIDERATION OF DEFLECTION IN TWO PLANES AND TWISTING

A.Yu. Liss and G.U. Margulis

The problem of the natural oscillations of a propeller blade /30¥
has been solved by a number of authors {(ef., for example, [1] -
[4]). However, they have considered only displacement in the
éweeping plane and twisting (separately or together). In contrast
to these works, an account of the technique for calculating the
natural oscillations of a blade with consideration of deflection

in two planes and twisting is given here.

The equatiocns for such blade oscillations were obtained in

[5]:

A, 3T = B, G0, 5 ) =0 (g=1, 2, 3), | (1)
where }(ﬂ,}(ﬂ{?@j'are the amplitudes of the deflections of the
blade axis along the x and y axes and twist of its cross section;
r 1s the coordinate of the blade cross section measured along 1ts
axls; A , B  are some integral-differential expréssions iinearly
dependent on x*, fﬂéﬂ and having the dimensions of torque; the

primes indicate differentiation with respect to r.

Investigation of the system (1) has shown that if the functions
Aq and B are considered as components of the vector operators A
and B and a special definitlon for the scalar product is introduced,
then these operatcrs will be linear and symmetric, the cperator

B 1s always positive, and the eigenfunctions of the system (1)

¥ Numbers 1n margin indicate pagination in original foreign text.
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are orthogonal with respect to the energy of the operators A and
B, while the form of the orthogonality conditions depends on the
boundary conditions of the problem.

For numerical solution of the problem for the elgenvalues
described by the system (1), we use the widely applied method of
replacing the system of functional eguations (1) by a system of
algebraic equations. For this purpose we write for selected blade
cross sections ry (i=0, 1,..., n)) the equations (1) and bogndary

conditions, expressing Aq and Bq through the quantities xi,ff,

%] using the formulae of numerical integration.

As a result we obtain a homogeneous system of algebraic equa-

tions with the parameter p2 relative to the unknowns x, v, 0 -

This system of equations has the appearance in matrix form:

MZ—-p*NZ=0, (2)
where M and N are square matrices of the equation coefficients; /31
Z={X”Y”ef} (3)

is the column matrix of the unknowns.

By multiplying FEjguation (2) from the left by the inverse of

M, we obtain the most general form for the matrix eigenvalue

problem:
(W—1E)Z=0,]| (4)
where :
A= 1/4%, y (6)

E 1s the dilagonal unit matrix.



Methods for solving the eigenvalue problem for the homogene-
ous systems of algebraic Eguations (2) or (4) have been well
elaborated.” Programs accomplishing this procedure are also
well-known, the most convenlent of which for solving the consld-
ered problem is that compiled by V. G. Bun'kov. It provides for
finding any number of eigenvalues and corresponding eigenvectors
for the ﬂroblem (4) by using iterations and the method cof ex-

haustion.

The calculation of the elements of the matrices M and N con-
stitutes the main difficulty. It can be most effectively accom-
plished using the integrating matrix method of M. B. Vakhitor [8].

Welrecall that, according to this method, with the transili-
tion from the functional to the matrix equations, the numerlical
integration corresponds to multiplying from the left by fthe inte-
grating matrix, whose form depends on the form of the consldered

integral. Thus, for the integral:

A= foy (9) d(-],TP& (7)

the matrix form has the appearance

a=sy, | (71)

where A = {AOAl - An} is the ecolumn matrix {vector) of the

quantities Ai; Y = {yoy1 .o yn} 1s the column matrix of the

quantities ¥q3 J. 1is the integrating matrix of first order.

1
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Cf., for example, [6], [7], where there 1s an extensive biblio-
graphy . _
%%

The polnts are numbered from the end of the integration inter-
val (ro) toward its beginning (rn).



By analogy, the integrals:

To

YO @, =Ty O C=ryd, A= (7 OO =y ch
ri .

fi '

A=

i

“
RS

correspond to the matrix formulaeg:
A=0Y, A=LY, A=J(f)Y, |

and the integral

A= {7y @&
i

corresponds to the matrix relation:

A=J(71y, |

where [f] is the diagonal matrix, whose elements are the quanti-
ties f(ro), f(rl), Cea, f(rn).

The double integral corresponds to double multiplication by
the integrating matrix. Thus, the integral:

A= f'afcl fy ) .

i Tn

corresponds to:
A=J LY.

Methods which are suitable for programming, for calculating
the elements of the integrating matrices, both for continuous as
well as for discontinuous integrand functiocns, and also for the
case when the spacilng at different portions of the integration

interval is not the same, are given in [8].
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For the application of the integration matrix method to the
considered problem, we write the expressions for the blade de-
formations. The following equalities are valld with consldera-
tion of the boundary conditions {ef. [5], Formula (18)}:

X =x (r‘f? -+ j:;\._'” (rydr, x =f§* (r) dr,,
| LI
¥ =V G+ [y, y=[y(ar, (8)

6(r)=8(r, ) f@(ndn
l rax

where Tys T Tay aT€ the coordinates of the vertical, horizontal,

and axial joints.

We first consider the simplest case of a blade rigidly fas-
tened to the hub. In this case:

X" (r,) =y' (r)) =8 (r ) =x(r)=3 (r) =0

and, in place cf the double-term formulae (8), we obtaln single~

term. They correspond to the matrix relations:

X' =5X" X=/,X,

y'!=J2Yw, Y=JQY’, e=J261', (9)

where the vectors:

XX o xgh ¥ =90y €/ ={0,... 61 .. (91)

For a jointed blade wilthout swinging compensation

(kl = 0):

x" (rv) = y" (rh) = @ (rax) = 0. (10)



One can also obtain single-term formulag for 1t, 1f one intro-

duces the vectors:

Xy = x50 Y = AT Tl (11)

and a modlfied integrating matrix of second order:
r jOO"' jO (n—1) 1
J .. s e s e e e s : (ll')

which differs from J2 in that the last column is replaced by ones.

Then the double-term formulaeg [8] will correspond to the

single-term matrix formulae:

- 0 = i
X Jej X4, X o= J,X,

L " -
Y Toy ¥4 ¥ =7

2

Y', @ =J,0°'. (129

2

Finally, at the butt of the jointed blade with swinging com-
pensation kl’ the feollowlng boundary conditions are valid {ef.
[5], Formula (18)1}:

, x" (rv> = 0,
y" (r) + P Blr ) =0, (13)
k4 v (rh) + 6 (rax) = 0,
Where
T P= -k ['(GfE + NI, aé(F WEL ]mt'.;gl_‘\\( (13")

To obtain single-term matrix formulag in this case, which

correspond to (8), we introduce the vectors:

Xo= AR BN VAT T =T BEy, | b

~
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in which the elements xo,. ¥, 6 equaling | zero are omitted {cf.
(5], Expression (16)}, and the modified integrating matrix:

Jorwoodo 111
Joel vl b (15)

of second order, obtained from the matrix J2 by eliminating the

first column and introducing the last column consisting of ones.

Then, Formulae (8) will correspond to the matrix equalities:

X'= 2.9]&:”]’ Y'= ch! ci’ €= J°_|ecl’- -‘(16)'
‘ X=JX, Y=J4Y". .
If one uses the notation:
, o [Mu My My N N, N
M= Mﬂx‘sz Mae' y o N = Ny, N:!_v N2B v (17)‘
M3x May M Nax 'Nay N3[|.. T

where Myos voes N36 are square matrices of (n + 1)St order, then

one can obtain expressions for the matrices appearing in (17) from

from (5) - (10) of [5], with the help of the presented formulag:

M, [E!l sin® cp+E!2cos ¢}~m2{[J3 —J5 (enir))JyJ, QJH—

A gcosp-%bmsm LIFA F {18)
My = [(£1, — Efi) sin ¢ cos¢f “‘“-‘“11[ (Fug—= g isinp COS ‘?JJI_], (19)
'54 mm{JﬂASmQHSWU)+J[mxsm$L]J[—JdmﬁfsquGﬁ, (20)
1, = [(El,— EL) sing cos ¢} — @™/, [(Z,, — ,m)ﬂﬂ?COS?LGﬂa_ ' (21)
sz [E1,cos’ ¢ +Ely sin® ¢ + o* {J5 (mr) JoJ, ) — ,
: — [T asin“e 7 cos gl JzJ]} ; (22)
My, = — o*{J; [x, cos o| [s (mr)] —J, [mx, r cos fpiJ JI} (23)
My = {[s () x, sin o] Jo — [r] S [mx sine| ), (24)
My = o*{ —[s (mr)][x, cos ¢} J; +J [mx_rcose|Jdyf, (25)
Myy = [Glg} + o™ {1, el F) [s (mr)] + Jifmx, e, cos ¢l J; +
- b S [ — 1) €08 20f Ay}, (26)

~



Now = Jylm] Tty - Jy [ c05* 6 -+ Ly sin® ] g, (27)

Ny = S ) sine cos @] fys) ‘ (28)

t Ny, =—J[mx, sin'np].izjs,j, | - . _ (29)
Aﬂi::flKgﬂ——ﬁm)Mn?cos¢J5ip ‘ | (30)
Ny =gy + Sl sinte 4 Dycostel by, | (31)

U Ne—dimecesdddg, ] (2

Ny =— hamo,singlJy, N X2
—%"ﬁ_'f—@;-’almxfco‘s_?_ife_z' - - LY.
~ NSﬂzjll‘[mI‘f?.' - o ' | _ V _J (35)

Here, [s (mr)] denotes the dlagonal matrix, whose elements
are cobtained by summing the elements of the corresponding row of

the square matrix J., [mr].

1

One must keep in mind that in the case of a rigidly fastened

blade, one must use J, in place of the matrix J and in the "~

233
case of a jointed blade with swinging compensatiocon, cne must use

the matrix J,, in place of sz in My_, Miy’ Nioo Niy (1 =1, 2,
32, and in place of J2 in Mie’ Nie'
Here, Z = {X" Y" @'} for the rigid blade, ZJ = {XH Yg e'}

for the jointed blade without swinging compensation, and Zc =

{Xg Yg Gé} for the jointed blade with swinging compensation.

] For calculaticon of the blade with swinging compensation, 1t
is necessary to omit the flrst column and add zeros as the last
column in the diagonal matrices [F/ sin’e - Ef; cos”e|, |Ef;cos® ¢ ++ Elysin“off,

(G123 +

_dﬂngFF}pyﬁﬂm appearing as terms in the expressions for M,

M One must similarly transform the square matrices

2y MBB'

,Jﬂxgynqﬁs(mfm and J;|x, cos¢][ s{mr)], appeariﬁg in M3x and M3y



When considering the boundary conditions according to which
the deflection and twisting torques at the end of the blade are
zero, one must omit in the matrices M and N the rows with numbers
1, n+ 2, and 2n + 3, and the columns with the same numbers (in
the case of the blade with swinging compensation, only the rows
are omitted as the columns dropped out with the use of the spe-
cial form of the matrix JZC)' The three misslng equations for
the blade with swinging compensation are obtained from the hound-
ary conditions (13). They are taken into account by introducing

intc the matrix M, three rows of the form:

n41 13 "
s e,

0...0 0...040...01

u+1 -n—1 n—1
——— ——— e

0...0 0...0100...0P0

w—1 R il

©0...0100...0 0..0.

Accordingly, three zero rows are introduced in the matrix N in
the eng.

The blades with other versions of fastening can also be cal-
culated by the technlque developed for the blade with swinglng
compensation. Thus, 1In the case of the jointed blade without

swinging compensation, it 1s sufficient to set kl = P = 0, and

for calculation of the blade rigildly fastened to the hub, the

last three rows of the matrix M must have the form:

1 n+1 a1
o, ——
0...010...0 0...0

n+1 "o n+1

g...0 0...010...0

n+1 41 n

—— e —

0..0 0...0 0...01.

#*
For programming convenlence, the corresponding rows and columns

can be omitted in the matrix U.

™~
[8)
\J1



According to the technique of [8], the integrating matrices
J are obtained by summing the elements of some matrix L, com-
posed of the welightling factors of the numerical integration

formulag.

This matrix is suitably represented in the form:

0 0 ...0
. £ 0 ...
L=G'7, 000 (36)
00 ...L,
Here, the first row of zeros, Ly (: =1, 2, +.., m - 1) are

rectangular matrices of order ki % (ki +1), correspondlng to the

ith interval of the blade with integration spacing hi’ where the
*
number of columns ki + 1 equals the number of calculated cross

sections per blade interval (including the cross sectlons border-

ing neighboring intervals:

9 19.—-5% 1 O 0 0 0 0O 0

-1 13 13_. —-1 O 0o 00 0
o0 —1 13 13,—-1... 0 0 0o 0 "0 |

Ll-zﬂ" ....... .. o'-}.] ----- B e T T T R e e . (37)
24 \
0 0 -0 0 0 —-1 13 13, —1 (O
0 0 0 ‘ 0 9] 0—1 13 13, —t
0 0 0 0 0...0 1-519 9 _
The matrix L 1s constructed such that the elements of Li’ /36

marked by the diagonal line are located on the main diagonal.
In order to take into account the varlous stagger of vertlcal,

#
Must have k; 2 3.
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horizontal and axial joints for constructing the matrices M and
N, according to Formulag (17) - (35), 1t is necessary to use
different integrating matrices J (we will distinguish them by the
indices v, h, and ax) according to the table:

X ¥ f
M N Grasky o Lg aq)v‘ (15 5)vf (2, 43 Jc)hj (1,3, 5N /z,-fct
Mﬂv N’.’ ‘,l 3, i)ht Jﬂv Qj]’ 2C-?‘j (Jl 3. S)hkr( 2 gjl gc‘)hl (jl 3 5)]3] (J2: a;xJ
MsNa (4,3 ](jz! 23| JQC\V1 (1,3,5) a:? (Js 2:[] h](-fl 3. s) (2 1y

1.0
dlax

It is advisable to take the same cross sections Tas Tps eees Ty g

for the matrices with the indices v, h, and ax, and the cross
section r, to coincide, respectively, with the vertical, horizon-
tal, and axial Joints. Then the length of the last blade inter-

val esquals:

Ny = Tpel ~ Tyd Bpp = g~ Tnd Bpax = Ppo1 - rak,
(38}
and the matrix L_ has the form for one row:
k“nVi :’z”vJ AIL”B]-\I;“H L 7‘_1:[\;3 -
L=’ J ngr 3 v | Tmax ”ﬁﬁ'_ (38")

The clted expression for Lmax permits 1introducing iInto the cal-
culation the elastic feorsion mounting at the blade butt, which

simulates the elasticity ¢, of the blade seal because of the

b
pliability of the skewness automaton. The torsion riglidity of
the meunting must be equal:

(6I), = h . c . (39)

nax v

If the natural osclllaticns of the blade are consldered
taking into account only the deflection oscillations in the
sweeplng plane yz, then Equation (2) is replaced by the matrix

eguation:

11



Mz.y-y[”“"'PzNgy Y”:O. ‘, I (40)

Blade oscillations with consideration of deflectlion of the blade
in the sweeping plane and of twisting are described by the matrix

) 5 - )
MSyMaﬂ e : - N3y1~y39 O

equation:

(41)

One can similarly write the equations for the natural oscilla-
tions cof the blade for other combinatlions of deformations. The

matrices M ' s N3e introduced into these equations are deter-

2y?
mined by Formulag (18) - (35), taking into account the cited
considerations relating tc the effect of the boundary condltions

on the form of the integrating matrices and the vectors X", ¥Y", 0'.

Calculation of the natural oscillations by the discussed
technique includes the following steps in the general case:

1) calculation of the matrices M and N from the Formulag

(168) - (35), excluding the necessary number of rows and columns;

2) inversion of the matrix M and calculatiocn of U from

Formula (5);

"3) determination of the elgenvalues and elgenvectors of the
matrix U. In the particular cases (40), (41), the number of cal- /37

culations for 1) is significantly reduced.

The discussed technique was programmed for the M-220 com-
puter and multiple calculations were carried out with 18 calcu-
lated cross sections. In particular, the calculated results for
18 calculated cross sections were compared with the exact solu-
tion for the case of deflection oscillations of a cantilever of

constant cross section. The relative error in the frequencies

12



of the natural oscillations for the first four harmonlcs did not
exceed 0.035%, i.e., the accuracy of the technique with 18 cal-

culated cross sections is very high.

4 sharp increase in rigidity and linear mass occurs In the
butt of an actual blade of a helicopter. To evaluate the error
caused by this fact, calculations were carried out for 6 har-
monics of blade oscillations with 18 calculated cross sections.
In one of the calculations, the blade butt (29.4% of the length)
was divided by the calculated cress sections inte 9 intervals,
and the end — into 8; in another — into 7 and 1@ intervals, re-
spectively. The results of these calculations practically coin-
cided; the greatest discrepancy in deflection ccecurred in the
slxth harmonic at the end of the blade and did not exceed 63%.

The lower harmonics coincilded significantiy better, the frequency
differences did not exceed 0.5%. Such results of the two calcu-
lations with different arrangements of the calculated cross sec-
tions permits evaluating the corder of calculation errors for
actual blades, and reaching the conclusion that blade calculation
with 18 calculated cross sectlons rationally distributed along

its length will fully provide the accuracy necessary in practice.

13
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